

Aerosol optical depth ground-based sensors, homogenization activities between different networks

Stelios Kazadzis Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center Switzerland

Overview

Aerosols and radiative forcing Aerosol Optical Depth Surface based AOD networks Homogenization activities

PMOD/WRC as World Radiation Center

Why are aerosols important?

Because aerosols have much shorter lifetimes and more varied distributions than greenhouse gases, the net effect on global climate is hard to predict.

Aerosols can increase the reflectance of clouds. They also may modify the lifetime of clouds by affecting precipitation.

First indirect effect: cloud-albedo effect

Scattering aerosols

Absorbing aerosols

(c)

5

Aerosols scatter solar radiation. Less solar radiation reaches The atmospheric circulation and mixing processes spread the surface, which leads to a localised cooling. the cooling regionally and in the vertical.

pmod wrc

Watter to

Surface level Health effects Columnar Radiative forcing Columnar profiles

Aerosol measurements / Intro Aerosols

Aerosols ?

Suspended particles in the atmosphere Ranging in size from a few molecules to tens of micrometers Our main interest is aerosols with 0.1<r<20 μm 1 μm is an approximate separation between "fine" and "coarse" aerosols

Optical Properties

Optical properties are important for several reasons

- Their effect on the radiative balance of the Earth's environment
- Their effect on heating of the atmospheric column which can change circulation and affect the water cycle
- Effect on visibility

What columnar aerosol properties are retrieved / used for studying their radiative effects ?

Aerosol Optical Depth (AOD) ~ aerosol amount

These optical measurements of light extinction are used to represent aerosol amount in the entire column of the atmosphere.

AOD is a unitless value and wavelength dependent.

Sample AOD values (visible): 0.02 - very clean isolated areas. 0.2 - fairly clean urban area 0.4 - somewhat polluted urban area 0.6 - fairly polluted area 1.5 - heavy biomass burning or dust event

Aerosol Optical depth

What is Aerosol Optical Depth?

"AOD is a quantitative measure of the extinction of solar radiation by the integrated columnar aerosol load"
"AOD is the single most comprehensive variable to remotely assess the aerosol burden in the atmosphere"
"AOD is a key variable in climate modelling, aerosol closure experiments and satellite verifications"

Aerosol Optical depth

Optical Depth <u>is not</u> Optical Thickness

Definitions in AMS Glossary of Meteorology

(consistent with WMO CIMO Guide or GAW#162 Report)

optical thickness : The dimensionless line integral of extinction coefficient along any path in a scattering and absorbing medium.

optical depth: The optical thickness measured vertically above some given altitude.

ECARS Summer¹School, Crete, 10 April 2017

Aerosol Optical depth

Turbidity and Visibility

Turbidity (AOD) optical extinction along vertical pathÅngström turbidity \approx AOD@1µmAOD = b * $\lambda^{-\alpha}$ Volz, Schüepp turbidity \approx AOD@500nm

Visibility (meteorological range) along horizontal path $V = 1/\tau \ln(1/\epsilon) = 1/\delta * 3.912$ (Koschmieder formula)

	Å(β)	AOD (500nm)	V(km)
Clean	0.02	0.05	80
Clear	0.1	0.25	16
Hazy	0.2	0.5	8
Turbid	0.4	1.0	4

Extinction of Sunlight

- Absorption in specific spectral domains by molecular (H₂O, CO₂, O₃, ...) and particulate matter (aerosols) Radiative energy is deposited in the atmosphere in form of heat or chemical reactions.
- Scattering by particles of a wide range in size from molecules to cloud droplets.
 Scattering is a continuous process, redistributing radiation in all directions for all wavelengths, but does not transfer energy.
- **Extinction** = Absorption + Scattering

What columnar aerosol properties are retrieved / used for studying their radiative effects ?

Aerosol Optical Depth (AOD) ~ aerosol amount

I=lo*e^{-mτ}

Aerosol Optical Depth

$$I(\lambda,\theta,r) = \frac{I_0(\lambda)}{r^2} * e^{-\left[\delta_R * m_R(\theta) + \delta_A * m_A(\theta) + \delta_G * m_G(\theta)\right]}$$

where *I* is the measured irradiance (in arbitrary units), I_0 the calibration constant, ε the diffuse light scattered into field-of-view, *r* the Sun-Earth distance (in astronomical units), m_x are the respective air masses for molecular scattering, ozone absorption and aerosol extinction with corresponding optical depth δ_x , ϑ is the apparent solar zenith angle, *p* is the actual and p_0 the standard atmospheric pressure.

$$\delta_{A}(\lambda) = \frac{\log\left(\frac{I_{0}(\lambda)}{I * r^{2}}\right) - \frac{p}{p_{0}} m_{R}(\theta) \delta_{R}(\lambda) - m_{O3}(\theta) \delta_{O3}(\lambda)}{m_{A}(\theta)}$$

Air mass approximations

<u>Definition</u>: (relative) Air mass is the density integral of an extinction component along a slant path through the atmosphere related to its vertical integral which defines unit air mass.

For a plane-parallel and homogeneous atmosphere all air masses would be equal to m=1/cos(sza), but for a curved and refracting atmosphere a numerical integration must be performed for each solar zenith angle sza using a realistic atmospheric model of vertical density and refractive index distribution.

Tabulated results of such calculations were published by several authors together with fitted approximation formulas such as those given below:

Rayleigh air mass
$$m_{R} = \frac{1}{\sin(e) + 0.50572(e + 6.07995)^{-1.6364}}$$
 (Kasten, 1989)

Ozone air mass
$$m_{o3} = \frac{R+h}{\sqrt{(R+h)^2 - (R+r)^2 \times \cos^2(e)}}$$
 (Komhyr, 1980)

Aerosolair mass
$$m_a \approx m_{_{H2O}} = \frac{1}{\sin(e) + 0.0548 \times (e + 2.65)^{-1.452}}$$
 (Kasten, 1966)

Where *e* is the apparent solar elevation angle, R=6370km the mean Earth radius, *r* the station height above sea level in km and *h* the height (\approx 22km) of the ozone layer. The aerosol air mass is further approximated by water vapour air mass, which has similar scale height.

ECARS Summer School, Crete, 10 April 2017

Rayleigh optical depth

- Rayleigh optical depth δ_R is proportional to atmospheric pressure
- Refractive index of air is wavelength dependent
- King depolarisation factor depending on air composition (CO₂)
- Explicit integrations fitted in wavelength by several authors

Approximat ion by Fröhlich & Shaw

$$-(3.916 + 0.074\lambda + \frac{0.050}{\lambda}) \times \frac{p}{1013.5}$$
[wavelength λ in μ m]

Extraterrestrial Calibration I₀

 I_0 can be determined from:

- A. Extrapolation through the atmosphere: Langley methods.
- B. Comparison to reference instrument
- C. Laboratory calibration combined with solar spectrum.

Calibration and AOD errors

An uncertainty of Calibration of 1% is required in GAW

Langley calibration

Langley plots for Mauna Loa observatory from November 2015 to April 2016.

ECARS Summer School, Crete, 10 April 2017

Measurement Techniques

• Pointed spectral radiometers (Sunphotometers)

Solar irradiance in narrow field-of-view Calibration of extra-terrestrial irradiance Requires two-axis sun tracker Atmospheric transmission

• Shaded hemispherical radiometers

Solar global and diffuse hemispherical irradiance Calibration of extra-terrestrial value and cosine response Rotating shadow band Atmospheric transmission

Sun and Sky-scanning radiometers

Solar irradiance and Sky radiance in narrow field-of-view Calibration of extraterrestrial value and absolute radiance Requires two-axis pointing robot Atmospheric transmission, scattering phase function

Instrument pictures

MFRSR-7 ECARS Summer School, Crete, 10 April 2017

Slide 23

CS-SP02

Specifications for Sun photometers

- Handheld instruments are inadequate for contemporary needs.
- Sampling rate: 1 observation/minute
- Timing accuracy <10 second, time reporting in UTC
- Site coordinates accuracy of 15arcsec
- Measurements resolution 1/5000 of full scale or better
- Full Field_of_View 2.5°, slope angles 1°; tracking <0.25°
- Primary channels 368±2/<6nm 412±2/<6nm (center/bandwidth) 500±3/<11nm 862±4/<11nm (additional channels) 778±2/5; 675±3/11; 610±2/11nm
- Ancillary data for air pressure, temperature and humidity
- Daily ozone total column at station or at nearby Dobson site
- Raw measurements should be archived with results

According to WMO CIMO Guide (1996), BSRN (2000) and GAW specifications.

ECARS Summer School, Crete, 10 April 2017

Available Instruments

Commercially available spectral Radiometers for Aerosol measurements						
Model	Manufact.	Channels	Viewangle	Network	Remarks	Software
Pointed Sunphotometers						
SP02 (-L)	Carter-Scott	4: 412, 500, 675, 862	5° (2.5°)			
PFR	<u>PMOD</u>	4: 368, 412, 500,862	2.5°	GAW-PFR	incl. DAQS	
PSR	PMOD	Spectral	2.5°		incl. DAQS	
SPUV-6 (10)	<u>YES</u>	6: 368, 500, 615, 778, 870, 940	2.5°		incl. DAQS	optional
Rotating Shado	wband Radion	neter				
MFR-7	<u>YES</u>	6: 415, 500, 615, 673, 870, 940	2π / 3.5°		incl. DAQS	optional
Sky-Scanning Radiometers						
CE318-1	<u>Cimel</u>	5: 440, 670, 870, 936, 1020	1°	AERONET	Filterwheel, tracker incl.	basic incl.
POM-01L	<u>Prede</u>	7: 315, 400, 500, 675, 870, 940, 1020	1°	SKYNET	Filterwheel, requires PC	free UNIX SW
SP1A	<u>Schulz</u>	18 WMO +	1° imaging		Filterwheel, requires PC	included

List is not exhaustive, further instruments may be available from other companies

QC: Cloud Filtering

- Automated measurements need objective cloud filtering algorithm
- Thin cirrus clouds are hard to detect
- Harrison: ΔI /Δm <0 under clear sky works well while air mass changes quickly, most useful for Langley calibrations
- Smirnov: AOD varies more slowly than cloud perturbations based on rapid 'Triplet' measurements
- Additional smoothness filtering using second derivatives of signal or AOD.

Cloud filtering example with broken thin clouds in the morning, haze and thicker clouds in the afternoon.

QC: Cleaning

Neglected maintenance (cleaning) \rightarrow erroneous results

Often hard to detect – always awkward to correct

Limited capability of automated tests \rightarrow manual checks required

ECARS Summer School, Crete, 10 April 2017

Slide 27

QC: Sun tracking

Sun tracker misalignment & hysteresis causing AOD artefacts

Individual checks and tight filtering required, possible with PFR!

ECARS Summer School, Crete, 10 April 2017

Slide 28

QC: Atmospheric Pressure

U95(p) <±2hPa

 $\Delta p \approx 3\pm 6hPa$

- Rayleigh $\delta_{R}(\lambda,p) >> \delta_{A}(\lambda)$ in UV-VIS range
- Davos station mean vs. sunny measurement:
- Differences among MODTRAN models (1km): $\Delta p = 7hPa$

 \blacktriangleright small error in AOD <0.005 \Rightarrow larger error & scatter in α for small AOD

Reason: $\delta_R(862) \approx \delta_A(862)$, but $\delta_R(368)$ =0.35, ρ =4.0; $\delta_A(368)$ =0.05, α =1.5

Instruments Precision Filter Radiometer

3 different cloud flags are determined for individual samples:

- 1. Harrison & Michalsky algorithm, modified for air masses <2
- 2. Triplet algorithm applied as moving filter on continuous samples
- 3. Optical thick (OD>3) clouds

PFR N21 at Riory, Japan

PFR specifications

- Automated, solar spectral radiometer
- 4 simultaneous channels at 862, 500, 412, 368nm using IAD interference filters
- Field of View: ±2.5°, slope angle 0.7°
- Dimensions: Ø90 x L300mm, Mass 3 kg
- Continuous, high cadence measurements
- Sensor at 20±0.1°C in range –25 ÷ 35°C;

internal shutter; airtight N_{2} flushed housing

- built-in pointing and barometric sensor
- Data logger with 30 day storage capacity

GAW – PFR measurements

pmod wrc

GAW-PFR Network

GAW Station

 Has uniform instrumentation and procedures for AOD measurement
 12 global stations (PMOD)
 17 associate stations (PFRs)

0 Measuring Submitting Image Credit: NASA **Users** TCP/IP PFR Logger Real time sub. WORCC **To WDCA: 22**

ECARS Summer School, Crete, 10 April 2017

Asia

Europe Davos, CH Hohenpeissenbe rg, DE Tenerife, ES Mace Head, IR Ny Alesund, NO Jungfraujoch, CH Sodankylä, FI Summit, Gr Jokioinen, FI Kiruna, SE Norrköping, SE Visby, SE Valentia, IR Cabauw, NL Zingst, DE Lindenberg, DE Zugspitze, DE

Danum Valley, (MA) M. Walliguan (CN) Anmyeon (SK) Jeju Gosan (SK) Ryori (JP) Ulleungdo Dokdo (SK)

N. America Mauna Loa, (US) Bratts Lake (CA)

Australia

Alice Springs, (AU)

Africa Cape Point (SA)

Antarctica Marambio (FI) Troll (NO)

31

PMOD WRC triad

Long term stability

WORCC triad maintenance

The PFR reference triad has been operating near continuously since early 2005.

Interruptions were due to recalibrations by the Langley-plot technique at Mauna Loa, Hawaii or Izana, Canary Islands.

The scatter of aerosol optical depth measurements at 500 nm with the triad sunphotometers is less than $0.0002 \pm 0.0011(1\sigma)$

which is well within the WMO criterion of 0.005 + 0.01/m

Sunphotometer Networks

Aeronet Network

CIMEL Sun-photometer Open data access via website: <u>http://aeronet.gsfc.nasa.gov/</u>

Sunphotometer Networks

sa.gov/

10 Ap

Sunphotometer Networks

World Data Center for Aerosols

GLOBAL ATMOSPHERE WATCH	WMO Global Atmosphere Watch World Data Centre for Aerosols	ib 💿 Site
♦ Home		November 1
	The World Data Centre for Aerosols (WDCA)	GAW Links
News & Events	is the data repository and archive for microphysical, optical, and chemical properties of atmospheric aerosol of the <u>World Meteorological Organisation's (WMO)</u> Global Atmosphere Watch (GAW) programme.	WMO Global Atmosphere Watch - GAW
2014 AGU Fall Meeting San Francisco, 15 - 19 December 2014 read more	"The goal of the Global Atmosphere Watch (GAW) programme is to ensure long-term measurements in order to detect transfe in global distributions of chamical constituents in gir and the reasons for them. With respect	GAW Scientific Advisory Gr for Aerosol
European Geosciences Union General Assembly 2015 Vienna, Austria, 12 - 17 April	to aerosis, the objective of GAW is to determine the spatio-temporal distribution of aerosis, or properties related to climate forcing and air quality on multi-decadal time scales and on regional, hemispheric and	GAW Station Information System - GAWSIS
2015 read more 16th annual EMEP TFMM	global spatial scales."	World Calibration Centre for Aerosol Physics (WCCA
meeting Krakow, Poland, 5-8 May 2015 read more	Drivial Drandia:	World Optical Depth Resea
2015 European Aerosol Conference	 Physical Properties. particle number concentration (size integrated) 	Global Atmosphere Watch
Milan, Italy, September 6-11, 2015 read more	 particle number size distribution particle mass concentration (two size fractions) 	Aerosol Lidar Observation Network
14th AEROCOM Workshop 5 October - 9 October 2015, Frascati/Rome, Italy, read	 cloud condensation nuclei number concentration (at various super-saturations) Optical Properties: 	World Data Centre for Greenhouse Gases - WDCG
more	 light scattering coefficient (various wavelengths) light hemischeric backscattering coefficient (various wavelengths) 	World Data Centre for
October 12-16, 2015, Hyatt Regency, Minneapolis,	Ight absorption coefficient (various wavelengths)	Atmosphere - WDC-RSAT
Minnesota, USA read more	 Chemical Properties: mass concentration of major chemical components (two size fractions) 	World Data Centre for Precipitation Chemister - W
San Francisco, 14 - 18 December 2015	Column and Profile:	World Ozone and Ultraviol
EGU General Assembly 2016	aerosol optical depth (various wavelengths) vertical profile of aerosol backscattering coefficient	Radiation Data Centre - W
Vienna, Austria, 17–22 April 2016	vertical profile of aerosol extinction coefficient	World Radiation Data Centre - WRDC
	Additional parameters recommended for long-term or intermittent observation:	GAW Expert Team on World Data Centres - ET-W

(IPC-XII) / 4th Filter-Radiometer Comparison (2015, Davos)

Sep, 28-Oct to 16, 2015, PMO Davos

- 12th International Pyrheliometer Comparison (IPC-XII)
- 4th Filter-Radiometer Comparison (FRC-IV)
- 2nd International Pyrgeometer Comparison (IPgC-II).

organized by the World Radiation Center (WRC) on behalf of the World Meteorological Organization (WMO).

http://projects.pmodwrc.ch/ipc-xii/

History ..

2000: FRC – I

Instrument signal comparison

7 wavelengths, 17 radiometers, 1 day measurements

common processing $\rightarrow \delta \delta \approx 0.016 @ 500$ nm (N=8)

2005: FRC – II AOD results

12 instruments at wavelengths 500±3nm & 865±5nm,

specific processing

comparison according to WMO recommendations (2004)

History ..

2010: FRC – III AOD results

17 instruments at wavelengths 500±3nm & 865±5nm,

Individual processing

FRC-IV 2015

AOD Comparison at wavelengths 367±5nm, 412±5nm, 500±3nm & 865±5nm, Ångström exponents

specific processing by participants comparison according to WMO recommendations (2004)

30 Instruments, 12 countries

Assessment of AOD Quality

WMO Report No. 162 (2005) discusses criteria for AOD quality:

"The ability to trace calibration to a primary reference(s) (i.e. traceability) not currently possible based on physical meas. systems. Hence, traceability based on AOD difference criteria"

- an inter-comparison or co-location traceability will be established if AOD difference between networks is within specific limits
- Inter-comparisons should be long enough such that:
 - a) \geq 1000 coincident AOD data points
 - b) Minimum 5 sunny days
 - c) AOD (500 nm) ~ 0.040 0.200
- For traceability, 95% of AOD difference should lie within: $U_{95} < \pm (0.005 + 0.010/airmass)$

FRC/Participating Instruments 30 instruments – 15 groups – 12 countries							
PFR	CIMEL	MFRSR	PSR	POM-2	SPO2	SSIM	Microtops
WORCC Triad-CH (3) SMHI-SE DWD-DE PMOD-CH (3) MeteoSwiss-CH	PMOD-CH AERONET-EU IZANA-ESP	DWD-DE NASA-US1 NOAA-US2 NOAA-US3	DWDa-DE DWDb-DE PMOD-CH	DWD-DE ARPA-IT JMA-JP KACARE-SA	BMa-AU NOAA-US	COFa-CA COFb-CA COFc-CA COFd-CA	MIC-GR
GAW-PFR	AERONET-EU	SURFRAD	DWD	SKYNETImage: Image: Imag			
Direct sun wl: 368, 412, 500, 863 nm Fwhm: 3.8- 5.4nm FOV=2.5 deg Meas: 1 minute	Direct sun wl: 340, 379, 440, 500, 670, 870, 1021 nm Fwhm: 10 nm FOV=1.2 deg Meas: ~15 minute	Global+diffuse wl: 415, 500, 610, 665, 860, 940 nm Fwhm: 10 nm FOV = variable Meas: 1 minute	Direct sun spec wl: 320-1000 nm Fwhm: 1.5-6 nm FOV=1.5 deg Meas: ~10 sec	Direct sun spec wl: 315, 340, 380, 400, 500, 675, 870, 940, 1020, 1627, 2200 nm Fwhm: 10 nm FOV=1 deg Meas: 1 min	Direct sun spec wl: 368, 412, 502, 675, 778, 812, 862nm Fwhm: 5 nm FOV=2.4 deg Meas: 1 min	Direct sun spec wl: 6 filters Fwhm: 5 nm FOV=2 deg Meas: 1 min	Direct sun spec wl: 6 filters Fwhm: 10 nm FOV=2.5 deg Meas: 1 min

Participating Instruments - Networks

AERONET

GAW-PFR

National Networks: Australia USA Germany

Japan

Skynet

samples at 500nm (PFR, POM-2, SPO, MFRSR, PSR, SIM: 1100-2000, CIMEL: ~300, 750, MIC: 350)

Duration ≥5 days OK

AOD500 within 0.040 ÷ 0.200 OD .. OK

U95: dAOD ≤ 0.005 + 0.01/m

ECARS Summer School, Crete, 10 April 2017

ECARS Summer School, Crete, 10 April 2017

The 4th Filter Radiometer Comparison

CIMEL (AERONET) instrument comparison at 500nm

98-99 % of data within WMO limits

ECARS Summer School, Crete, 10 April 2017

WrC

The 4th Filter Radiometer Comparison

POM-2 (SKYNET) instrument comparison at 500nm

Date

WIC

The 4th FRC results

AOD differences at 500 nm

The 4th FRC results

AOD differences at 865 nm

Ångström Exponents

Conclusions

• Calibration uncertainties, methods used for calibration and AOD retrieval, instrument measuring principles contribute to the observed dispersions

Conclusions

- Agreement for AOD at 500nm and 865nm
- Angstrom Exponent still doubtful for AOD ~0.1
- Cloud screening differences
- Processing differences (ozone, NO₂..)
- High AOD comparisons (field of view + issues)
- Long term comparisons
- Results could be used as a starting point for global AOD homogeneity initiatives among different Networks

WMO report

https://www.wmo.int/pages/prog/arep/gaw/documents/GAW_Report_No_231_7_Nov.pdf

Google: WMO report 231 FRC

Permanent Cimel-PFR comparison at Izaña

ime

Period: from 20/01/2005 to 9/11/2014

Long-term Intercomparison Cimel/AERONET – PFR/GAW at Izaña

1' minute simultaneous Cimel-PFR AOD data at 4 channels (2 actual channels)

15 CIMELs and 3 PFRs were used in this period

WORCC and AERONET / EUROPE

Collaboration of PMOD/WORCC with Izaña observatory:

- Langley calibration of PFRs and triad calibration transfer
- Calibration PSR, lunar PFR, UV-PFR
- Long term comparison of CIMEL and PFR
- Link long term traceability of GAW-PFR and AERONET/Europe

ECARS Summer School, Crete, 10 April 2017

Romero et al., in preparation

ECARS Summer School, Crete, 10 April 2017

SKY-NET / POM-2 instruments: looking for permanent traceability to WORCC

Chiba – Japan: 1/2016 – today PFR vs CIMEL

SKY-NET / POM-2 instruments: looking for permanent traceability to WORCC

Valencia – Spain: 2/2015 – 1/2016

Campanelli, Kazadzis, et al.,: The SKYNET radiometer Network: Aerosol Optical Depth retrieval performance at the FRC-IV campaign and long-term comparison against GAW-PFR and AERONET standard instruments, WMO-TECO, 2016

ECARS Summer School, Crete, 10 April 2017

Atmospheric Aerosol Eddies and Flows NASA GSFC Space Science Full HD Video.mov

ECARS Summer School, Crete, 10 April 2017

