

East European Centre for Atmospheric Remote Sensing

Doina Nicolae, INOE

ACTRIS, THE GROUND-TRUTH FOR AEROSOLS, CLOUDS AND TRACE GASES

Reasons for ACTRIS

East European Centre for Atmospheric Remote Sensing

IPCC, 2013

How ACTRIS emerged

Single instrument \rightarrow network \rightarrow network of networks \rightarrow research infrastructure

Low physical content variables \rightarrow high physical content variables

<u>ACTRIS role</u>

4

ACTRIS					
EARLINET • aerosol profiles (troposphere)	AERONET-EU • aerosol column	CLOUDNET • cloud profiles (troposphere)	EUSAAR • near surface aerosol & trace gases		
PANDONIA trace gases column 	ICOS • carbon fluxes	 Column-averaged CO₂, CH₄, N₂O, HF, CO, H₂O, and HDO 	NDACC • aerosol, clouds, trace gases, greenhouse gases (stratosphere)		

ACTRIS offer

Technology

- Calibration
- Optimization
- Standardization
- Innovation

Science

- Observations
- Data synergy
- Verification/validation
- Trends

ACTRIS observation map

East European Centre for Atmospheric Remote Sensing

ACTRIS data portal

- Aerosol profiles: backscatter, extinction & linear particle depolarization
- Aerosol column: AOD, Angstrom exponent, size distribution, refractive index,
- Aerosol near-surface: PM1 (+ non-refractory), PM2.5, PM10 (+ non-volatile), absorption coeff., scattering coeff., elemental carbon, ...
- Clouds
- Near-surface trace gases: NO, NO2, NH4, …

ACTRIS variables

<u>http://actris.nilu.no/</u>

ACTRIS Data Management Plan

http://actris.nilu.no/

ACTRIS ADDED-VALUE DATA PRODUCTS

This service has been funded or supported by the Norwegian Institute for Air Research (NILU), the EU research infrastructure ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure), the European Monitoring and Evaluation Programme (EMEP). and the WMO Global Atmosphere Watch (GAW) programme.

This service has been funded or supported by the Norwegian Institute for Air Research (NILU), the EU research infrastructure ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure), the European Monitoring and Evaluation Programme (EMEP), and the WMO Global Atmosphere Watch (GAW) programme.

Model validation

AEROCOM // Michael Schulz , Jan Griesfeller

Trends: ADD

<u>Trends: surface SO₂</u>

AEROCOM // Michael Schulz , Jan Griesfeller

An example: lidar

WHAT CAN YOU DO FURTHER WITH ACTRIS Data

<u>... E.g. look into aerosol</u> properties

<u>General procedure</u>

East European Centre for Atmospheric Remote Sensing

- Identification of layers = high SNR
- Calculation of layer-averaged intensive optical parameters (AE, LRs, LPDR, ...)
 - Fine particles / coarse particles
 - Absorbing / non-absorbing
 - Spherical / non-spherical
- Potential source (backtrajectory)
- MODIS fire maps / DREAM model
- Guess of the type
 - General class
 - Mixtures not possible
- If spherical: microphysical inversion
- If smoke & deposited to ground: AMS
- If not spherical: POLIPHON

S. Samaras, D. Nicolae, C. Bockmann, J. Vasilescu, I. Binietoglou, L. Labzovskii, F. Ţoancă, A. Papayannis, Using Raman-lidarbased regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols, *J COMPUT PHYS*, vol. 299, pp. 156-174, 10.1016/j.jcp.2015.06.045, 2015

Lidar optical profiles and source

<u>Example</u>

LIRIC profiles

14/06/2012

24/06/2012

Size distribution: ground*, layer, column

* Aerodynamic diameter to geometric diameter: DeCarlo P. et al., Particle Morphology and Density characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory, Aerosol Science and Technology, 38:1185–1205, 2004.

... How about the aerosol type?

NATALI model

Colors adjusted for comparison with measurements at right

Note: Holger Baars' typing

- RCS files >>> high res. (spatial)
- Features, not types

Observations and simulations at 355 nm

A

TRiS

Observations:

LMU (dots), TROPOS (open square)

Aerosol_cci model (filled stars)

Variations with different refractive index and shape distribution (open stars)

(1) U. Wandinger et al, "HETEAC: The Aerosol Classification Model for EarthCARE", EPJ Web of Conferences 119, 01004 (2016), DOI:10.1051/epjconf/201611901004

<u>Proposed types:</u> <u>source + transport</u>

Aerosol type	High Resolution	Low resolution
Continental	Continental	Continental
Dust	Dust	Dust
ContinentalPolluted	Continental Polluted	Continental Polluted
Marine	Marine	Marine
Smoke	Smoke	Smoke
Volcanic	Volcanic	Volcanic
Continental + Dust	ContinentalDust	Continental / Dust
Dust + Marine Volcanic + Marine	MarineMineral	Dust / Marine
Continental + Smoke	ContinentalSmoke	Continental/ContinentalPolluted / Smoke
Dust + Smoke	DustPolluted	Dust / Smoke
Continental + Marine	Coastal	Continental / Marine
ContinentalPolluted + Marine	CoastalPolluted	ContinentalPolluted / Marine
Continental + Dust + Marine	MixedDust	Continental /Dust / Marine
Continental + Smoke +Marine	MixedSmoke	ContinentalPolluted / Smoke

School, Crete, April

Typing module

- Two options: with or without depolarization
- For each dataset, for each layer:
 - Generates values between error bars
 - Creates all possible combinations
 - Runs 3 different high resolution ANNs + 3 different low resolution ANNs for each set of values in the more complex A class
 - Constrain: min. acceptable confidence level (default 70%)
 - For each: the "best type" = higher no. of agreements / higher confidence level
 - Vote: "best type" out of all
- Information available for each dataset & all layers:
 - layer properties
 - aerosol type retrieved by each ANN, no. of agreements, confidence level
 - "best type" in high and/or low resolution

<u>Output module</u>

Altitude of the bottom of the layer in	Altitude of the top of the	Angstrom Exponent
meters	layer in meters.	
Angstrom Exponent Absolute Error	Color Index (355nm/532nm)	Color Index (355nm/532nm) Absolute Error
Color Index (532nm/1064nm)	Color Index (532nm/1064nm)	Color Ratio (355nm/532nm)
	Absolute Error	
Color Ratio (355nm/532nm)	Color Ratio (532nm/1064nm)	Color Ratio (532nm/1064nm) Absolute Error
Absolute Error		
Lidar Ratio (355nm) in sr	Lidar Ratio (355nm) Absolute	Lidar Ratio (532nm) in sr
	Error in sr	
Lidar Ratio (532nm) Absolute Error	Linear Particle Depolarization	Linear Particle Depolarization Ratio (532nm)
in sr	Ratio (532nm)	Absolute Error
Low resolution aerosol type	High resolution aerosol type	Remarks about the aerosol layer
A1L ANN aerosol type	A1L ANN confidence level	A1L ANN confident answers
A1H ANN aerosol type	A1H ANN confidence level	A1H ANN confident answers
A2L ANN aerosol type	A2L ANN confidence level	A2L ANN confident answers
A2H ANN aerosol type	A2H ANN confidence level	A2H ANN confident answers
A3L ANN aerosol type	A3L ANN confidence level	A2L ANN confident answers
A3H ANN aerosol type	A3H ANN confidence level	A3H ANN confident answers
B1L ANN aerosol type	B1L ANN confidence level	B1L ANN confident answers
B2L ANN aerosol type	B2L ANN confidence level	B2L ANN confident answers
B3L ANN aerosol type	B3L ANN confidence level	B3L ANN confident answers

Hands on NATALI v.1.1.7

- Copy folder v.1.1.7
- Double click "natali.exe"
- Select the data folder
- Select the data files
- Optional: settings
 - Altitude range to be displayed
 - Filter window: layer sub-structures
 - Min. layer depth: disregard thin layers
 - Finesse: statistics of the voting (bins between error bars)
 - Min. accepted confidence
 - Min accepted agreement
 - Display high resolution results
- Start processing
- Open CSV file created in the same place as "natali.exe"

Compare with EarthCARE classification

Check with LIRIC and GARRLIC

Calculate mass concentration

HANDS-DN NATALI

East European Centre for Atmospheric Remote Sensing

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 602014.